
A Modeling Method for Representation of
Geographical Information of a System-of-Systems

Young-Min Baek, Eunho Cho, Yong-Jun Shin, and Doo-Hwan Bae
School of Computing

Korea Advanced Institute of Science and Technology (KAIST)
Daejeon, Republic of Korea

{ymbaek, ehcho, yjshin, bae}@se.kaist.ac.kr

Abstract—Due to the increasing interest in Systems-of-Systems
(SoSs) and SoS engineering (SoSE), a considerable number of
model-based SoSE methods have been actively researched in
recent years. Since a constituent of an SoS may not be originally
designed to constitute a higher-level organization or SoS, the
integration of distributed independent constituents is a crucial
SoSE activity. However, the distribution poses challenges for SoSE
because this characteristic inevitably increases uncertainties that
can largely influence constituents’ behaviors and interactions.
Therefore, this uncertain distribution should be systematically
modeled and simulated and a geographical map (GeoMap)
should be appropriately embedded in a simulation model as
a fundamental simulation object. However, existing simulation
techniques do not concentrate on geographical features; they
only focus on the structural and behavioral aspects of models.
To support the modeling and simulation of the geographical
features of an SoS, this study proposes a modeling method that
flexibly represents geographical information. On the basis of SoS-
specific characteristics, our method provides a scalable modeling
technique for building, updating, and managing a GeoMap for
simulation. An open-sourced project, called GeoMapBuilder-for-
SoS, is developed to simulate the geographically distributed en-
tities of an SoS and demonstrate the applicability and feasibility
of the proposed modeling method.

Keywords—Model-based System-of-Systems Engineering, Geo-
graphical Map, Distributed System, Modeling & Simulation

I. INTRODUCTION

In recent years, a considerable number of large-scale sys-
tems have been engineered to integrate autonomous systems
and achieve higher-level common goals. For this reason, since
the 2000s, Systems-of-Systems (SoSs) and SoS engineering
(SoSE) have been actively studied in both academia and
various industrial domains [1], [2]. An SoS comprises multiple
distributed constituents that can have managerial and opera-
tional independence [3]. A constituent of an SoS might not be
originally designed as a part of the SoS; thus, the integration,
and orchestration of diverse constituents are the most crucial
goals of SoSE. To systematically integrate such constituents
into SoSs, which may have large sizes and high complexity,
many model-based approaches have been studied for SoSE,
such as model-based requirements engineering, design, testing,
and verification [4], [5].

For effective model-based SoSE (MBSoSE), an SoS should
be properly modeled from various angles and aspects for
different purposes of engineering activities. A study by Nielsen

et al. [2] defined major dimensions for positioning an MB-
SoSE approach; the authors stated that one of the dimensions
that SoS engineers should consider is the distribution of
constituents. Their physical and virtual distributions inevitably
increase uncertainties that influence constituents’ states and
behaviors while interacting with other dispersed entities.
Proper infrastructure and communication media for MBSoSE
cannot be designed and developed without consideration of
the geographical distribution and dispersion of constituents.

Effective analysis of an SoS requires a modeling and
simulation (M&S) technique for observing and evaluating the
possible behaviors of an SoS before releasing or deploying
the SoS [6]. Even though M&S processes can vary according
to the type of SoS and its objectives, geographical features
and information need to be represented in the simulation
model appropriately. Simulation results can be used for critical
decision making, such as cost-benefit analysis and safety and
risk analysis, to address behavioral and structural uncertainty
issues caused by geographical changes. However, existing
SoS simulation approaches mainly focus on the structural
and behavioral aspects of SoSs; they do not consider ge-
ographical characteristics as the first tier entities of SoSs.
Even though domain-specific map modeling approaches have
been developed, such as those used in traffic map modeling,
a forest map modeling, and game level design, they only
leverage fixed sets of domain-specific geographical features;
thus these approaches are not scalable for extensions, updates,
and modifications.

For the same purpose, related studies have developed
domain-specific geography modeling methods that build maps
that mainly focus on the representation of the location points of
objects. Some markup languages were developed to represent
geographical entities and objects using basic geometric classes,
such as coordinates (e.g., xPos, yPos, longitude, latitude, and
altitude), lines, and polygons [7], [8]. They provide well-
established formalisms and interfaces to build general-purpose
maps via visualization means, but they share common limita-
tions from the lack of a conceptual framework. Without such
conceptualization, a technique only can provide a fixed set
of geographical semantics; thus, it cannot support a scalable
method to flexibly model different types of maps according to
evolving requirements and different domains.

To address these issues in the M&S of the geographical

2021 16th International System of Systems Engineering Conference (SoSE), Online, Västerås, Sweden, June 14-18

978-1-6654-4454-5/21/$31.00 ©2021 IEEE 7

20
21

 1
6t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
of

 S
ys

te
m

 o
f S

ys
te

m
s E

ng
in

ee
rin

g
(S

oS
E)

 |
97

8-
1-

66
54

-4
45

4-
5/

21
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

SO
SE

52
73

9.
20

21
.9

49
74

62

features of SoSs, this study proposes a method of modeling
the geographical information of an SoS. The contributions of
this paper can be summarized as follows.

• This study formally defines a geographical map (Ge-
oMap) and the properties of an SoS by conceptualizing
the general geographical information of the SoS.

• On the basis of the conceptualization, this study proposes
a scalable method that enables the concise modeling of
a GeoMap to manage the geo-locations of SoS objects.

• The feasibility of our approach is demonstrated by ap-
plying the method to an actual simulation engine and
modeling several types of maps possibly used in SoS
domains.

II. RELATED WORK

Some previous studies developed approaches that represent
the geographical properties of software and systems. One of
the mainstreams in this topic is the markup language-based
modeling approach, which provides geometric and geographi-
cal semantics, syntax, and corresponding notations. Geography
Markup Language (GML) is an XML-based markup language,
and a standardized method of modeling geographical data [7].
GML supports modeling physical entities, such as buildings
and persons, as features; geometric properties can be expressed
as GML features in a formal way, such as points, lines, and
coordinate-based polygons. There are application schemas that
are based on the basic GML definition, such as CityGML [9],
which extends the GML to a specific domain. As another
markup language, Keyhole Markup Language (KML) was
developed to model and visualize graphical data on Google
Earth and Google Maps [8]. To locate an object on these maps,
one locates a KML object using the longitude, latitude, and
altitude, and this object can be visualized and animated also.

A UML-based modeling method was proposed to represent
the geographical properties of a system by extending the
UML profile, including stereotypes, tags, and constraints.
GeoFrame [10] and GeoProfile [11] utilize the UML extension
so that a modeling engineer specifies geographical objects and
properties using the UML syntax. Various modeling languages
have been developed for existing methods, but these languages
only utilize general geographical properties, such as coordi-
nates (e.g., longitude, latitude, and altitude). Moreover, they
were developed without a general conceptual framework; thus,
building maps may require much effort to flexibly react/adapt
to geographical changes and events.

Several simulation engines that represent geographical maps
(GeoMaps) have been developed. Simulation of Urban MO-
bility (SUMO) is an open-source simulation tool for traffic
networks [12] that simulates a traffic environment with vehi-
cle agents and a routing algorithm. SUMO obtains a traffic
network map written in XML as an input, which can be
converted from GML files. SUMO utilizes traffic domain-
specific models and data to perform its simulation. AnyLogic
is another popular simulation software for various domains,
such as traffic networks, physical plants, and warehouse op-
erations [13]. Using AnyLogic, an engineer can model and

Fig. 1. Conceptualization of a GeoMap

simulate a geographically-distributed system, such as a traffic
network, based on a two-dimensional (2D) space. Although
AnyLogic supports the user-defined or library-based definition
of a map, it does not support scalable extensions of geograph-
ical features.

III. DEFINITIONS BASED ON CONCEPTUALIZATION

A multi-dimensional geographical map (GeoMap) can be
conceptualized as depicted in Figure 1. The map in the
figure is a two-dimensional GeoMap that is described by two
dimension variables (GeoDimensions), which are xPosDim
and yPosDim. If the dimension variables have concrete values
(e.g., xPosDim==1), then the map can return a specific
location point, called GeoLocation. Each GeoLocation has an
individual set of data, called GeoData, and it describes the
spatial features of interest. In the example, the GeoData is the
isWall variable, which indicates whether a GeoLocation in
the 2D plane is a wall.

The concepts of GeoMap, GeoLocation, GeoDimension, and
GeoData are defined as below, and formal representations are
shown for each concept.

• GeoMap: A GeoMap, which stands for a Geographical
Map, is a model that represents a particular (physical
or logical) area/space to show geographical features and
data. A GeoMap consists of multiple unit location points,
called GeoLocations. A GeoMap is defined as a function
from a GeoLocation to a GeoDataSet to represent the
information of whole location points, . The GeoLoca-
tion aggregates a set of GeoDimension variables, and
the GeoDataSet represents a set of GeoData variables.
Since the dimensions and data are logically designed to
represent discrete values, a GeoMap has a finite number
of locations.

GeoMap : GeoLocation → GeoDataSet

A semi-formal definition and an example of a GeoMap
definition are presented as follows:
defMap map_name:(GeoDimension [,GeoDimension])

-> (GeoData [,GeoData])

defMap MapExample:(xPosDim,yPosDim)->(isWall)

• GeoLocation: A GeoLocation is a geographical unit that
describes a particular location point on a GeoMap. A
GeoLocation is pinned and identified by a set of condi-
tions of the GeoMap’s GeoDimensions, and the condition

2021 16th International System of Systems Engineering Conference (SoSE), Online, Västerås, Sweden, June 14-18

8

Fig. 2. A GeoMap Meta-Model

is described by a conditional expression of the variable
name and value. Therefore, a GeoLocation is defined as a
Cartesian product of one or more GeoDimensions based
on their value domains.

GeoLocation =
∏
n

DimV arn

where n is the number of DimVars and n > 0. To specify
a particular location, a GeoLocation should be able to
represent conditional expressions (dimVarCond) on the
basis of the dimensions. The following is an example of
a GeoLocation (1,0) specification:
(xPosDim==1&&yPosDim==0)

– DimVar: A DimV ar is a variable used to describe
a particular dimension of a GeoMap and constrained
by a concrete domain. Here, a variable commonly
includes its default value (defval) and current value
(curval).

DimV ar = (defval, curval, V arDomain)

A domain of a variable is semi-formally represented
by the values below in square brackets for the
definition of a dimension variable. The following
example shows the definition of an xPos variable
without the defval and curval.
defVar xPosDimVar(, ,[0,9])

• GeoDataSet: A GeoDataSet is a set of DataVars for
all the GeoLocations of a GeoMap, and all the points
of the map commonly include a set of GeoData with
specific values. Similar to the GeoLocation, GeoDataSet
is defined as a product of zero (∅) or more DataVars.

GeoDataSet = ∅ or
∏
n

DataV arn

Fig. 3. Overall Process to Develop a GeoMap
– DataVar: A DataV ar is a variable used to include

the data/information of a GeoLocation of a GeoMap.

DataV ar = (defval, curval, V arDomain)

Simliar to a DimVar, a DataVar which has TRUE as
a defVal and no curVal is semi-formally defined as
follows.

defVar isWallVar(FALSE, ,[TRUE,FALSE])

• VarDomain: A V arDomain constrains and specifies the
range of possible values of a variable, such as DimVar
and DataVar.A domain for numerical variables specifies
the minimum and maximum values (e.g., [0,100]), and
a domain for enumeration variables should specify a list
of allowed data values (e.g., [“FLOORB1”, “FLOOR1”,
“FLOOR2”]).

IV. MODEL-BASED DEVELOPMENT OF A GEOMAP

A. GeoMap Metamodel

For the general definition of GeoMaps for different SoS
domains, a GeoMap Metamodel is developed to conceptualize
the geographical information of an SoS, as Figure 2 shows.
On the basis of the definitions in Section III, the GeoMap
class is defined as an abstract class that aggregates one or
more DimVars and zero or more DataVars. Both variables
are defined using the _SimDataVariable_, which is an
abstract class that represents a generic type for various data.
The domains of data possibly assigned to the variable ob-
jects can be constrained by concrete domain objects, called
SimDataDomain. The DimVarDomain class constrains a
DimVar object, and the DataVarDomain likewise constrains a
DataVar object. A domain of a dimension variable should be
discrete so as to logically locate an object on the map.

B. Developed Processes and Techniques

1) Process for Developing a Concrete GeoMap: With the
explained GeoMap metamodel, a concrete (or domain-specific)
GeoMap class can be developed by following the process
shown in Figure 3. The first step is to identify the dimensions
of the GeoMap, such as xPos and floorNum, which can be de-
fined as discrete dimension variables (DimVars) in the second
step. As explained in Section III, a dimension variable should
specify its domain (DimVarDomain) to determine the range
of possible values, and a combination of domains of multiple
dimensions determines the intended size of the GeoMap. In

2021 16th International System of Systems Engineering Conference (SoSE), Online, Västerås, Sweden, June 14-18

9

Fig. 4. GeoMapBuilder-defined Abstract Classes (GACs) of a Simplified SoS Simulation Model and a Simulation Engine

the third and fourth steps, the graphical properties and data of
interest are identified and defined as data variables (DataVars)
with their domains (DataVarDomains). If the variables of the
dimensions and data are defined in a map object, HashMap-
based location information will be automatically initialized
with pairs of keys of all possible location points and default
values of the DataVars.

2) Initialization and Update of the GeoMap: If an SoSMap
(a GeoMap of an SoS) object is successfully defined and ini-
tialized, then an engineer can either statically or dynamically
initialize/update the map. As explained in Section IV-B1, the
concrete data of all location points (i.e., GeoLocations) are
stored in a hashmap, so search-by-key (get) and update-by-
key (put) operations are supported. However, if some location
points need to be updated in batches, the engineers may
have to exert considerable effort in the manual initialization
or update. For this reason, our model supports the query-
based initialization of a GeoMap, as Listing 1 shows. The
syntax of the query highly resembles the syntax of SQL-based
queries, which use SET and WHERE keywords. The SET-
clause (e.g., isWallVar=false) defines queries to assign values
to the DataVars, and the WHERE-clause (e.g., xPosVar==1)
specifies the conditions of DimVars. The ALL keyword can
be used or the WHERE clause be omitted for an update of all
the location points of the map. The assignment should follow
the domains of the DataVars defined in the map, otherwise,
the update will be denied by our map building engine, called
MapBuilder.
// GeoMap : 3*3 tiles
// DimVars: xPosVar (INT:0˜2), yPosVar (INT:0˜2)
// DataVars: isWallVar (BOOLEAN:TRUE,FALSE)
SET(isWallVar=FALSE)WHERE(ALL);
SET(isWallVar=TRUE)WHERE(xPosVar==1);
SET(isWallVar=TRUE,isChargingStationVar=TRUE)
WHERE(xPosVar==2&&yPosVar==2);

Listing 1. Example Queries for Map Initialization

3) Locating Entities/Objects on the Map: A key of the
hashmap (map locInfo) is generated as a list of concrete
values of DimVars to represent a particular GeoLocation. For
example, if a map has three DimVars (e.g., xPosVar, yPosVar,
and floorNumVar) and (3,2) is a location of interest on the
third floor of the map, the location can be represented as
3,2,"FLOOR_3". In our simulation engine, the same key
string applies to the location of an object (obj location). Thus,

a simulation engineer can initialize the location information of
each object using the key string.

C. Implementation: GeoMapBuilder-for-SoS

SoS simulation model. An SoS simulation model based
on the Metamodel for SoSs (M2SoS) is developed [14].
M2SoS comprehensively conceptualizes containers, entities,
and objects that constitute an SoS, and major container classes
consist of an SoS, Organization, Infrastructure, Environment,
and Map. However, to build a simple model focusing on
geographical distribution, we design a simplified version of
the simulation model using the minimum set of classes defined
in Figure 4. The model introduces major GeoMapBuilder-
defined abstract classes (GACs), which can be specialized into
domain-specific concrete classes constituting a specific SoS.

Among the GACs, classes whose nomenclature is
ClassName (i.e., gray boxes of Figure 4) are abstract
classes that cannot be directly inherited by user-defined
classes. All the objects and entities defined in an SoS are sub-
classes of _SimObject_, which represent a simulatable ob-
ject. In the definition of a map, objects, and actions in an SoS,
other abstract classes (_SimMap_, _SimDataVariable_,
SimDataDomain, _SimAction_) are also included in
the simulation model. Since these simplified GACs are de-
signed to simulate the geographical features of an SoS, ge-
ographical classes are defined to follow the definitions in
Section III.

According to the definition of GACs, an SoS class contains
an SoSMap object and one or more actionable Entity objects.
The SoSMap is defined by including lists of DimVars and
DataVars, and the geographical information of the map is
managed by a key-based hashmap (map locInfo). From the
definition of an SoSMap, every subclass of _SimObject_
can have its own GeoLocation (obj location). A string-based
key representing a location point (e.g., (3,9) for a 2D map) can
be used as a particular location of an object. The model largely
simplifies the Entity class and action classes. M2SoS originally
defines different types of entities, such as Constituent, Sys-
temEntity, ServiceEntity, and ResourceEntity, but this model
abstracts the definition of entities and only considers them
as an actionable entity that can perform capable actions.
Moreover, among various types of actions (e.g., FuncAction

2021 16th International System of Systems Engineering Conference (SoSE), Online, Västerås, Sweden, June 14-18

10

Fig. 5. Example Types of GeoMaps for Case Study

and CommAction), only the MoveAction class is defined as a
subclass of _SimAction_.

Simulation engine. To validate constituent entities and ver-
ify whether a GeoMap is correctly developed in a simulation
model, we develop a simulation engine that can perform basic
functionalities for the discrete-time simulation. According to
our previous work [6], the simulation engine (SimEngine
in Figure 4) repeatedly runs the simulation model across
logical and discrete time (i.e., simulation tick). Currently, the
simulation engine mainly focuses on geographical changes and
events that occur in a given simulation model. The engine
builds a map with the MapBuilder controller class, and it can
take a mapInitFile as an input using MapFileReader for the
initialization of a GeoMap.

On the basis of the implementation of the GACs and the
simulation engine, a simple program and example GeoMaps
are developed, and they are currently available on GitHub1.

V. CASE STUDY

To show and validate the effectiveness of our GeoMap mod-
eling method, we first selected four major types of GeoMaps
that can be utilized for the simulation of many SoS cases, as
Figure 5 illustrates. Four types are (a) one-dimensional (1D)
line, (b) 1D cycle, (c) 2D plane, and (d) 3D cuboid, and the
formal definitions of the maps are provided. These GeoMap
types appear simple, but an n-dimensional map can be defined
by adding any dimension to the maps. The map nodes partially
represent the GeoLocations of each map, and the node colors
symbolically represent the values of the DataVars of each
location.

1https://github.com/KAIST-SE-Lab/GeoMapBuilder-for-SoS

Among these four types, only the implementation of the
last case (d) is introduced as a representative example due to
lack of space, but the implementations of all the other cases are
included in the GeoMapBuilder project. As Figure 5 illustrates,
the cuboid-type GeoMap has three DimVars and two DataVars,
and the variables and the map are defined as specified in
Listing 2. For the initialization of the map, Listing 3 states
the initialization queries for two DataVars for GeoLocations
that meet the conditions.

defVar xPos(,,[0,4])
defVar yPos(,,[0,3])
defVar floorNum(,,["FLOORB1", "FLOOR1", "FLOOR2"])
defVar isWall(FALSE,,[TRUE,FALSE])
defVar isChargingStation(FALSE,,[TRUE,FALSE])
defMap BuildingMap: (xPos, yPos, floorNum)

-> (isWall, isChargingStation)

Listing 2. Definition of a Cuboid Map

SET(isWall=FALSE, isChargingStation=FALSE);
SET(isWall=TRUE)WHERE(xPos==0);
SET(isChargingStation=TRUE)
WHERE(xPos==3 && yPos==1 && floorNum=="FLOOR2");

Listing 3. Initialization Queries for the Cuboid Map of Figure 5-(d)

From the abovementioned definition and initialization pro-
cess, the cuboid GeoMap can be manipulated or extended
easily. For example, if an engineer needs to additionally
consider a new dimension (buildingId) and a new data
(dustLevel), the existing BuildingMap can be extended to
MultiBuildingMap by defining a new DimVar as showed in
Listing 4. Although this is a small GeoMap example, any map
can be easily reconfigured either at design-time (statically) or
at run-time (dynamically) according to the implementation.

defVar buildingId(,,["BLDG_A", "BLDG_B"])
defVar dustLevel(0,,[0,100])
defMap MultiBuildingMap:

(xPos, yPos, floorNum, buildingId)
->(isWall, isChargingStation)

Listing 4. Extension of a Cuboid Map

VI. EVALUATION AND DISCUSSION

Strengths. The definition and metamodel of the GeoMap
support scalable and extendable modeling of the geographical
information of an SoS. By using two different types of vari-
ables (DimVar and DataVar), our modeling method concisely
conceptualizes the overall geographical information of an SoS.
The proposed method also enables flexible modification of a
GeoMap, as it allows engineers to simply adjust the domains
of variables (DimVarDomain, DataVarDomain). By modifying
DimVarDomains, an engineer can easily increase or decrease
the number of location points of a GeoMap. Similarly, by
specifying DataVarDomains, one can represent a variety of
geographical properties of a location point.

Second, our GeoMap implementation offers an interface for
the query-based initialization/update of the map. This can not
only support the domain engineering for various SoS domains
but also enable the development of predefined maps, templates,
and themes. Furthermore, with use of this dynamic/static

2021 16th International System of Systems Engineering Conference (SoSE), Online, Västerås, Sweden, June 14-18

11

update of the states/statuses of a map, any simulation engine
can easily update the map according to environmental changes,
events, or stimulus during a simulation.

Lastly, this study introduces semi-formal definitions of a
GeoMap and its properties with a metamodel and formal
representations. From them, a model-driven approach can be
supported to develop a GeoMap for any type of simulation. If
a GeoMap implemented in a simulation model conforms to our
GeoMap metamodel, a scalable formalism and corresponding
operations can be supported systematically.

Limitations. The current version of GeoMapBuilder does
not support a map rendering technique and a graphical user
interface (GUI). If they are developed, a simulation engineer
will be able to easily configure and monitor geographical states
for simulation. This limitation can be addressed by extending
our open-source tool to include a symbolization method for
map rendering and graphical representations. Another limi-
tation can come from the management of map data based
on a local memory, which may consume large amounts of
computing resources. This issue can be handled with support
for database(DB)-based management; in this manner, remote
storage is independently utilized specifically for GeoMap man-
agement. DB-based management has additional advantages in
the use of set and Boolean algebras and nested/complicated
query processing. Finally, an SoS ecosystem of an SoS can
have geographical constraints, which need to be properly
included in a GeoMap model. To prevent the building of
an infeasible map, other controllers (e.g., ConstraintBuilder
and Rule(Conflict)Checker) can be implemented in a domain-
specific way, on the basis of a specific scheme. This problem
can be addressed via interweaving between a GeoMap model
and real data models, which will enable DataVar objects to be
more realistically designed.

Future Work. Due to these limitations, future studies and
investigations are needed. First, a mapping technique between
a physical SoS map/world and a logical GeoMap should be
developed. The mapping may require specific data models,
domain knowledge, and thorough analysis of the application
domain. While developing a logical GeoMap, SoS engineers
should consider the following characteristics of physical SoS
maps: 1) continuity (temporal and spatial), which is a fun-
damental characteristic of the physical world; 2) uncertainty,
which is inherent in data variables and real-world events;
and 3) interdependency, which refers to mutual influences
between different geographical locations. These characteristics
should be rigorously analyzed and engineered using a proper
abstraction methods and data analyses.

VII. CONCLUSION

In order to perform a more realistic modeling and simulation
(M&S) of a System-of-Systems (SoS), it is necessary to sys-
tematically represent, design, and model geographical distribu-
tion of constituents. Most of all, designing a geographical map
must take precedence in order for the simulation of behaviors
and interactions of the distributed SoS entities. This study, for

this purpose, focuses on a general-purpose modeling method
to represent geographical information of an SoS, including
a geographical map (GeoMap), object locations, and geo-
graphical changes and events. To support systematic GeoMap
modeling, we proposed a GeoMap meta-model and developed
GeoMapBuilder-for-SoS that supports scalable definition and
management of a GeoMap. Through case studies, this study
shows the applicability, effectiveness, and scalability of our
modeling method, and effectiveness and scalability are also
demonstrated. Future work is needed to support additional
operations a GeoMap class (e.g., union, distance, correlation,
etc.) and automated GeoMap code generation.

ACKNOWLEDGEMENT

This research was supported by the MSIT(Ministry of
Science and ICT), Korea, under the ITRC(Information Tech-
nology Research Center) support program(IITP-2021-2020-0-
01795) and (No. 2015-0-00250, (SW Star Lab) Software R&D
for Model-based Analysis and Verification of Higher-order
Large Complex System) supervised by the IITP(Institute of
Information Communications Technology Planning Evalua-
tion).

REFERENCES

[1] M. Jamshidi, System of systems engineering: innovations for the twenty-
first century. Wiley, 2008, vol. 58.

[2] C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Peleska,
“Systems of systems engineering: Basic concepts, model-based
techniques, and research directions,” ACM Comput. Surv., vol. 48,
no. 2, Sep. 2015. [Online]. Available: https://doi.org/10.1145/2794381

[3] M. W. Maier, “Architecting principles for systems-of-systems,” Systems
Engineering, vol. 1, no. 4, pp. 267–284, 1998.

[4] A. Babu, S. Iacob, P. Lollini, and M. Mori, “Amadeos framework and
supporting tools,” in Cyber-Physical Systems of Systems. Springer,
2016, pp. 128–164.

[5] I. Sommerville, D. Cliff, R. Calinescu, J. Keen, T. Kelly,
M. Kwiatkowska, J. Mcdermid, and R. Paige, “Large-scale complex
it systems,” Communications of the ACM, vol. 55, no. 7, pp. 71–77,
2012.

[6] S. Park, Y. Shin, S. Hyun, and D. Bae, “Simva-sos: Simulation-based
verification and analysis for system-of-systems,” in 2020 IEEE 15th
International Conference of System of Systems Engineering (SoSE),
2020, pp. 575–580.

[7] C. Portele, “Ogc geography markup language (gml)–extended schemas
and encoding rules,” in Open Geospatial Consortium Inc. Citeseer,
2012.

[8] “Keyhole markup language,” Aug 2020. [Online]. Available: https:
//developers.google.com/kml/documentation/kmlreference

[9] G. Gröger, T. H. Kolbe, C. Nagel, and K.-H. Häfele, “Ogc city geography
markup language (citygml) encoding standard,” 2012.

[10] J. L. Filho and C. Iochpe, “Specifying analysis patterns for geographic
databases on the basis of a conceptual framework,” in Proceedings
of the 7th ACM international symposium on Advances in geographic
information systems, 1999, pp. 7–13.

[11] G. B. Sampaio, F. R. Nalon, and J. Lisboa Filho, “Geoprofile-uml profile
for conceptual modeling of geographic databases.” in ICEIS (3), 2010,
pp. 409–412.

[12] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner,
“Microscopic traffic simulation using sumo,” in The 21st IEEE
International Conference on Intelligent Transportation Systems. IEEE,
2018. [Online]. Available: https://elib.dlr.de/124092/

[13] “Anylogic.” [Online]. Available: https://www.anylogic.com/
[14] Y.-M. Baek, J. Song, Y.-J. Shin, S. Park, and D.-H. Bae, “A meta-model

for representing system-of-systems ontologies,” in 2018 IEEE/ACM
6th International Workshop on Software Engineering for Systems-of-
Systems (SESoS). IEEE, 2018, pp. 1–7.

2021 16th International System of Systems Engineering Conference (SoSE), Online, Västerås, Sweden, June 14-18

12

