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초 록

사이버물리시스템오브시스템즈 (CPSoS)는물리적,사이버환경에서소통하는구성시스템들로이루어진

시스템으로다양한환경에서작동하므로,자가적응성을갖추는것이매우중요하다. 하지만, CPSoS의자가

적응성을 위해서 시간 제약과 변칙이라는 두 가지 과제가 있다. 시스템의 적응은 정해진 시간 제약 내에

이루어져야하며,기계적결함,사이버공격,혹은창발적특성등에서오는시스템의변화에서생기는변칙을

고려할 수 있어야 한다. 하지만, 존재하는 기법은 두 측면을 완벽하게 처리하지 못하고 있다. 이 연구에서는

런타임에 큰 시간을 소모하지 않고, 알려진 시스템 변칙을 처리하는 새로운 기법, A4를 제시한다. 이 기법은

런타임 전에 알려진 시스템 변칙을 학습하고, 해당 변칙이 감지될 때, 그 영향을 완화하는 기법이다. 이

연구에서는 A4와 다른 기법을 가상, 물리적 CPSoS에서 평가하였으며, A4가 다른 기법과 비교해 충분히

효율적임을 보여준다.

핵 심 낱 말 사이버 물리 시스템, 시스템 오브 시스템즈, 자가 적응 시스템, 시스템 변칙, 강화 학습, 전이

학습

Abstract

Cyber-Physical System-of-Systems (CPSoS) is a system that is composed of multiple constituent systems

that exist and interact with both physical and cyber environments. It is regarded as essential to reach

the self-adaptivity to CPSoS because it is working on the uncertainty of various environments on both

cyber and physical. Two challenges to achieving the self-adaptive CPSoS are time-constraint and system

anomalies. The adaptation should be processed within the time constraint and consider the anomalies

caused by the system’s change due to mechanical faults, cyber-attacks, or emergent behaviors. However,

existing adaptation approaches cannot fully handle both aspects. This research proposes the advanced

approach, A4, for the self-adaptive system that handles the known anomalies without enormous time in

runtime. This approach learns the known anomalies before runtime and mitigates their impact when the

anomalies are detected. The research evaluates the A4 approach on the virtual and physical CPSoS and

shows that A4 is efficient enough rather than other approaches.

Keywords Cyber-Physical System, System of Systems, Self-Adaptive system, System anomaly, Rein-

forcement learning, Transfer learning
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Chapter 1. Introduction

1.1 Research Background

The Cyber-Physical System-of-Systems (CPSoS) comprises multiple constituent systems that exist

and interact with both physical and cyber environments. [3] With the improvement of modern software

technologies like the Internet of Things or Cyber-Physical Systems, the concept, CPSoS came out to the

reality by making connections between the physical and cyber environment in the complex system-of-

systems. However, those connections increase the variety and complexity of the environment that CPSoS

face. [4] Thus, without the proper strategy to mitigate the various uncertainty of the environment, it is

almost impossible to design software that achieves the system goal reliably and safely for every possibility

of the environment. [5]

The self-adaptive system is the one approach that enables the re-organization of the behavior and

structure of the system to achieve the system’s goal at runtime in response to the changing environment.

The most adaptation process of the self-adaptive system is called MAPE [6], which continually repeat

monitoring the environment, analyzing & planning the adaptation, and executing the adaptation tactic.

Therefore, self-adaptation is regarded as essential to CPSoS to reduce the effort and improve the system’s

reliability. [7]

There are various existing adaptation approaches for the self-adaptive systems. One existing ap-

proach uses model checking (MC) techniques to verify whether the adaptation tactics meet the system’s

goal or not. [8, 9] These approaches compose the formal model like Markov Decision Process and verify

the model with properties based on the system’s goal. Another adaptation approach based on reinforce-

ment learning (RL) finds the adaptation decision based on the learned knowledge by offline or online

learning. [10, 11] With the reward configured by the system’s goal, the RL model trains offline and

online to understand the system’s behavior and environment. Furthermore, based on the learning of the

system and environment, the model selects the proper adaptation tactic for the given state of the system

and environment.

However, there are two challenges for achieving self-adaptation in the CPSoS, and existing ap-

proaches cannot fully handle them. The one thing is the time constraint. The CPS should adapt to react

to the environmental change within a certain time. The MC-based approaches require high verification

costs like time or memory to verify the whole system. For complex systems like a CPSoS, the whole

adaptation process might be failed because of time and memory constraints. Despite statistical model

checking costing less than probabilistic model checking, it also needs to spend a long time verifying the

tactics. [8]

Another challenge is the anomaly of the CPSoS. The anomaly of the CPS is the abnormal state

or data that the system produces. The system’s change causes those CPS anomalies due to mechanical

failures, cyber-attacks [12], or emergent behavior, which can be discovered in system-of-systems. [13]

The RL-based approaches which use offline learning cannot handle this problem. One possible solution is

the system’s online learning to re-train based on the changed system. However, the online RL model can

also lower the efficiency when the anomaly remains during the re-training process, so the model should

re-train twice to adapt the system with anomaly and without anomaly.

1



1.2 Motivation & Goal

The adaptation for CPSoS should be free from time-constraint problems.

The critical issue for applying the self-adaptive system in the real world is the time for each adapta-

tion process. Every system should meet the needs of time constraints. However, the system is complex

enough to verify the adaptation tactics hardly.

There are anomalies of a system that affect the adaptation approach’s performance.

Existing adaptation approaches, mostly reinforcement learning-based approaches, cannot handle

the system anomalies caused by changing the system’s behavior due to various factors like mechanical

failures or emergent behavior. Therefore, in this research, the adaptation approach will consider anomaly

detection and verification of the tactics.

The contributions of this research are as summarized:

1. This research proposes the novel adaptation approach, A4, for a self-adaptive system that is free

from time constraints and considers the unintended behavior of the system.

2. This research applies and evaluates the proposed approach, A4 to testbed to show the performance

of the approach.

• The evaluation is conducted with two self-adaptive testbeds, one of which is a physical testbed.

1.3 Thesis Outline

The remainder of this paper is organized as follows. Chapter 3 introduces the fundamental concepts

of the requirements of understanding of this paper. The related works of self-adaptive systems are

described in chapter 2. Chapter 4 shows the detailed approach of A4, and it evaluates in chapter 5.

Furthermore, chapter ?? shows the threats to the validity of this research, and chapter 6 concludes the

paper.

2



Chapter 2. Related Work

There have been various existing approaches for the self-adaptive system. The researches can be

divided into three possible solutions, improving and resolving the complexity of the model checking (MC)

technique [8, 9, 14], utilizing the reinforcement learning (RL) technique [11, 15, 16], and using both model

checking and reinforcement learning techniques to ensure both time constraint, and performance. [10, 17]

C. Stevens et al. (2020) proposed the approach and the tool that reduces the model’s size for

the MC technique by excluding tactics to concern. The approach defines the two models, structural

and behavioral. The tool analyzes both models and extracts the reachable state and possible reward

bounds information. The potential metric for each adaptation tactic is calculated based on the analysis.

Furthermore, the approach excludes non-Pareto optimal adaptation tactics based on the metric values.

As a result, the tool reduces the model size average by 60% and 20% for two self-adaptive system testbeds.

[9]

M.A. Nia et al. (2020) also proposed an approach that approximates the verification process. This

approach first constructs the formal model of the system and analyzes the strongly connected component

that has a direct connection between states among the system states. Moreover, each strongly connected

component is approximated independently based on the approximation algorithm. To sum up, although

the adaptation performance is less than the non-approximated result, the cost for adaptation decreased

an average of 25%. [14]

Y.J. Shin et al. (2021) proposed to use statistical model checking (SMC) instead of probabilistic

model checking and a formal model of the system. Instead of using the formal methods, SMC requires

the simulation and a sampled future environment. Based on the result of SMC, the system selects the

proper adaptation tactic. This research shows that SMC can dramatically advantage over time rather

than probabilistic model checking. [8]

The approaches that improve original MC techniques show that they can take advantage of costs.

However, the evaluation of the approaches is limited to the simple self-adaptive system with a small

number of tactics and no physical components. Y.J. Shin et al. (2021) evaluate the complex system.

However, the approach also takes a long time to process the adaptation.

For utilizing reinforcement learning, D. Kim et al. (2009) is the first research utilizing reinforcement

learning on the self-adaptive system. They proposed the Q-learning-based self-management system and

showed the relationship between the performance and hyperparameters of the RL techniques. It also

first proposed the online learning process of the RL model. [15]

A. Palm et al. (2020) organize the online RL approach for the self-adaptive system. In this research,

they proposed the policy-gradient-based, online-learning RL approach. Every step, the approach mon-

itors the state and gets its reward. The policy is updated based on the reward, system state, and last

step’s action. They showed that the approach could adapt to various sets of environments. [11]

Approaches that utilize RL show the potential of applying various machine learning techniques

to self-adaptive system problems. RL-based approaches seem very familiar to adaptation approaches

because solving a game in RL techniques is very similar to finding an optimal tactic of a self-adaptive

system. However, the machine learning models cannot handle any drastic changes, and it is not yet

proven to converge to the optimum.

F. Quin et al. (2019) proposed utilizing machine learning techniques to find the relevant adaptation

3



tactics that are likely to be optimal. Based on the MAPE-K loop, the analyzer turns on the machine

learner to determine the set of optimal-like adaptation options. The machine learner returns the result,

and the model checker verifies the adaptation options. After the verification ended, the machine learner

improved based on the verification result. [17]

J. Cámara et al. (2020) proposed the approach for a self-adaptive IoT system that uses RL to select

the tactic. The target system of the research has quality goals that have to satisfy. The pattern selector,

which is the Q-Learning RL model, learns the adaptation tactic based on the given system state. The

selected tactic is translated into the formal model and verified by the model checker. If the verification

result satisfies the QoS goals, the tactic is selected. [10]

Both approaches used the RL model, but the method utilizing the RL model is slightly different.

F. Quin et al. (2019) [17] used it for reducing the adaptation space, and it seems like the RL version of

the approach of C. Stevens et al. (2020). [9] Therefore, the limitation of the approach, time complexity,

might be a problem even it reduces the verification space. The approach of J. Cámara et al. (2020) [10]

is more look like the RL-based approaches. However, it can use it only for the systems with QoS goals

and the same limitation, anomalies.

4



Chapter 3. Background

3.1 Self-adaptive System

The term adaptation came from biology, which means the process of changing the organisms because

of the changing environment. Especially, prefix self- in the term self-adaptation shows that the adaptation

process of the system is executed without any help, support, or modification of human beings. [18]

Thus, the self-adaptive system means the system that reconfigures itself autonomously to respond to

environmental changes.

Figure 3.1: Conceptual model of self-adaptive system [1]

Figure 3.1 shows the conceptual model of a self-adaptive system with four fundamental parties:

adaptation goals, managing system, managed system, and environment.

The environment is the external world of the self-adaptive system. A self-adaptive system tries to

adapt to this environment by sensing the environment via sensors and affecting the environment via

actuators. For example, road traffic should be the environment in the self-adaptive traffic light system.

The traffic light system senses the traffic and actuates the environment by the traffic light duration.

Adaptation goal is the qualitative or quantitative software system quality factor that the system

wants to achieve. The adaptation goal is quite intuitive, as the goal of a traffic light system is to reduce

traffic, and the goal of a smart factory is to improve production efficiency without any safety crisis.

Based on this adaptation goal, the managing system manages the managed system. The managing

system analyzes the environment and constructs the plan for the adaptation. For instance, a managing

self-adaptive traffic light system monitors the traffic and calculates the traffic light’s optimal duration.

Then, this optimal adaptation plan is executed in the managed system.

5



3.1.1 Self-adaptive System Testbeds

This section introduces the details of testbeds for future evaluation in this study. In this research,

two testbeds are used for the evaluation. Both testbeds represent the example of the cyber-physical

system.

Self-adaptive Traffic Light

The flow of the cars changes as time goes by. There may be traffic congestion during the rush hour,

and sometimes, there can be a traffic accident that disturbs other cars and make more traffic congestion.

The self-adaptive traffic light system can be an excellent example for the CPS self-adaptive system that

needs to be aware of anomalies like traffic accidents. The self-adaptive traffic light system predicts the

number of cars based on the historical data. Based on the prediction of the future environment, the

signal controller finds the optimal configuration of the traffic signal length that minimizes the number

of waiting cars in the intersection.

Figure 3.2: Traffic signal pattern for the self-adaptive traffic light

The self-adaptive traffic light system will be used as a virtual testbed in this research. Figure 3.2

shows the traffic signal pattern for the system. The one cycle of the traffic signal is composed of six

component patterns. Each component must have at least one tick, which is, in this example, 10 seconds,

and the sum of the duration of whole components must be 12 ticks, 2 minutes. In this configuration, the

number of tactics must be 462.

Regarding 10 seconds as one tick, the simulation will be long for 24 hours, with 8640 ticks. Because

the d1 is more or equal than one, there is a time to adapt in one tick, 10 seconds. Therefore in this

testbed, the reasonable time constraint is 10 seconds.

Self-adaptive Smart Warehouse

Smart Warehouse is the self-adaptive edge-computing-based system that targets to reduce the time

to serve the order and exists as a physical testbed. Figure 3.3 shows the overview of the system. There are

four types of items that the warehouse contains. The classification subsystem classifies the items based

on their type and sends them to the repository subsystem. The repository subsystem holds the item and

releases it when the order is received. The shipment subsystem sends the item to the destination.

The top view of the whole system is provided in figure 3.4. The item goes left in the right direction.

The left-most device is the classification subsystem, the middle three are repository subsystem, and the

rightmost device is the shipment subsystem. Each subsystem is consists of one edge server and one to

three LEGO EV3 devices. The LEGO EV3 device controls the conveyor belt, which also performs the

role of temporal storage of the item. The device communicates with the edge server, the raspberry pi,

and follows the direction of the edge server. The edge servers collect the system state from devices and

6



Figure 3.3: Overview of the self-adaptive smart warehouse system

Figure 3.4: The top view of the Smart Warehouse System

other edge servers and decide based on the predefined rules. The decision-making of the edge server

depends on the direction of the cloud server. The virtual customer sends the order to the cloud server.

The cloud server examines the environment from the data of edge servers and selects the adaptations.

Each communication is based on the HTTP post of API that edge or cloud server provides. The edge and

cloud server is made with Python Django REST framework to efficiently respond to the communication

and log the message and data.

The adaptation in the smart warehouse is based on the environment, orders. The orders are gener-

ated based on the rule with uncertainty. The smart warehouse can adapt the repository for each item

type. For example, if there are three repositories, items 0 through 3 will store 0, 1, 2, 2 for each. There-

fore there is a total of 81 adaptation tactics. The anomaly of the system is a stuck issue. The item

naturally stopped middle of the conveyor belt because of the uncertainty of motors. In this research,

only two types of stuck issues will be the target anomaly; the stuck on two side repository devices. The

item can pass the repository subsystem after 50 seconds when the stuck has happened.

However, in this research, the overall reliability of physical components of the smart warehouse is

not enough to evaluate with large amounts of orders and items. Therefore, the adaptation tactic changes

into the single item level. It means that selecting the repository for each item will be the adaptation

problem. Also, the anomaly will be artificially made in the system for a fair comparison. Moreover, to

improve the reliability, the smart warehouse functions based on the discrete tick, which means, in one

7



tick, the classification subsystem and shipment subsystem can only serve one item, and the repository

subsystem can only release one item per device.

Anomaly Generation

Since the comparison should be fair, the anomaly is generated artificially in this research. The cause

of the anomaly of CPS is very different, and the distribution of the anomaly is also various. In this study,

the anomaly assumes that it follows the wear-out failure rate.

p = 1− e−t/C (3.1)

Equation 3.1 shows the probability of anomaly when the time after anomaly is t, and C shows

the value that controls the distribution of the anomaly. The approximated version of the equation was

used for the self-adaptive traffic light. With this anomaly probability equation, the simulator or the

experiment system artificially makes an anomaly based on the given probability.

3.2 Reinforcement Learning (RL)

Reinforcement learning (RL) is a machine learning technique that targets an agent’s actions based

on the observed dynamic environment. The observed environment in the RL does not mean the same

as the environment in the self-adaptive system. To the RL model, the environment is the environment

of an external system and the system state. The RL model considers the set of state of the environment

S, which is system states and external environment, set of actions A, and rewards Ra(s, s
′), the reward

after changing state from s to s′ by doing action a. The final goal of the learning is that find the

policy π that shows the probability of selecting actions at a certain state to maximize the accumulated

reward. There are two kinds of techniques in RL, model-free, and model-based. Model-free algorithms

are learned without any knowledge from the target environment, like the state transition function in

Markov Decision Process. Generally, model-free algorithms learn based on the result of multiple trial-

and-errors and repeatedly improve the policy. However, model-based algorithms can learn efficiently

based on the information of reward functions. [19]

The following algorithms are common RL techniques:

• Deep Q-learning

Q-learning is a model-free RL technique that learns the potential reward Q of the action at the

given state. With the number of results of trials, the value at selected action and state, Q(st, at)

is updated by the current rewards and estimated future rewards. [20] Deep Q-learning technique

is originated by applying a deep learning algorithm to the original Q-learning algorithm. By

implementing the convolutional neural network to RL and using replay memory. [21]

• Soft-Actor-Critic

Actor-Critic algorithm uses a two network, actor and critic. The actor network learns the fuction

of probability of selecting the action π, and the critic network learns the value of the system state,

V . [22] The Soft-Actor-Critic algorithm is applying the entropy on the training process. [23]

• Deep Deterministic Policy Gradient
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Policy Gradient algorithm is the policy-based algorithm that uses the gradient of the value function,

Q in Q-learning. Policy π is defined as a stochastic function, and the reward for one episode

establishes the differentiated policy’s gradient direction. [24] Deep Deterministic Policy Gradient

is a technique that applies actor-critic algorithm and deterministic policy function. The critic

function assesses the value of the state and action and learns the policy based on the value of critic

function by policy gradient method. [25]

In this research, reinforcement learning is used to react and select adaptation tactic by predicting the

changing environment of the self-adaptive system. For the evaluation, the Deep Q-learning algorithm is

selected and utilized to select the optimal adaptation tactic in a future environment and given anomalies.

3.3 Transfer Learning

Transfer learning technique saves the training time and cost and improves the machine learning

model’s performance by bringing the knowledge from the pre-trained model. Transfer learning is widely

used for image classification tasks. [26]

Figure 3.5: Transfer learning strategy from [2]

P. Marcelino (2018) proposes the strategies for applying the transfer learning technique based on

the dataset size and similarity. Figure 3.5 shows the strategies. If the dataset is wealthy enough and the

similarity is low, training the whole model is efficient. However, if the similarity is high and the size of

the dataset is small, it is more efficient to train only the classifier or lowest layer. [2] In this research, the

proposed approach applied the transfer learning to re-train the anomaly-free tactic planner for anomaly-

specific tactic planners. The dataset size is enough because the research uses the modeled anomaly in

the simulatable model. Therefore, in this research, the entire model will be re-trained. However, the

speed and cost will spend less than training from scratch.
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Chapter 4. Approach

4.1 Overview

Figure 4.1: Overall A4 process

This research proposes the A4 approach, the Anomaly-Aware Adaptation approach. Figure 4.1

shows the overall adaptation approach of A4. This approach aims to select the optimal tactic with a

given system state while mitigating the effects of the potential CPS anomalies. The process is divided

into pre-runtime and runtime. Before the process begins, A4 requires knowledge of target anomalies and

their specification, anomaly identifier, historical environment data, simulatable digital model, adaptation

tactics, and goal specifications. In the pre-runtime phase, the tactic planner is generated. (Step 1) The

generation process needs samples of the environment based on the historic environment data. (Step 2)

The tactic planner generates reinforcement learning with the simulatable digital model and adaptation

specifications. (Step 3) The generated tactic planner helps generate anomaly-specific tactic planners,

which is the tactic planner for anomaly occurrence. By transfer learning, the anomaly tactic planner can

be easily generated. (Step 4) In runtime, the system monitors the system and captures the environment.

(Step 5) The anomaly identifier analyzes the system state and detects the anomaly. (Step 6) The

generated tactic planner finds the optimal tactic with a given system state and identifies anomalies.

Steps 4 to 6 will be repeated throughout the whole system runtime. The next sections will provide the

detailed approach with the example based on the self-adaptive traffic light system.
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4.2 Knowledge

Principle. The historical environment data is used to learn the system and environment in offline.

Moreover, the A4 requires the executable system model and an abstraction of the target cyber-physical

self-adaptive system. The model can be written in any modeling language, and the model can contain

any of the information that the engineer selected. However, it should be able to execute step by step and

extract the system’s state by logs. The simulatable model also contains the set of possible adaptation

tactics, and each adaptation tactic can be executed by reconfiguring the system. The adaptation goal or

reward shows the system’s target, and it should be able to check based on the system state.

Table 4.1: Specifications for anomaly

Principle
Example

Self-adaptive traffic light system

Anomaly Anomaly Car accident

Occurrence

How many components occurs the

same anomaly?

How many types that anomaly has?

Four ways of the intersection

Behavior Change

How the system changes

its behavior?

How the anomaly disturbs the

adaptation goal?

Reduce the outflow of the

intersection

Average Impact
How much the anomaly effect the

system?
Decrease the outflow by 50%

Average

Duration

How long the anomaly effect the

system?
1 hour (360 tick)

Identified by
How the system can identify the

anomaly?
By cameras, police report

Identified after

How long the system can identify

the

anomaly?

After 10 seconds (1 tick)

The anomalies of the system are an essential part of the A4. The anomaly of the CPSoS is the

irregularly happened undesirable event that is caused by internal/external factors of CPSoS. The A4

approach can target and mitigate the negative impact of the known anomalies of CPSoS when the

engineer can define the specifications on table 4.1. The engineer should specify occurrence, behavior

change, average impact, average duration, and identification of anomaly. Occurrence means the types of

anomalies. The same anomaly can occur in different components with similar impacts. Behavior change

and impact show how the system changes due to the anomaly. This factor needs to be implemented on

the simulatable digital model. Moreover, the last thing is the identification process of anomalies.

Example. The main environmental factor for the self-adaptive traffic light system is the inflow of

the intersection. The system can predict and sample the environment based on the historical data of the

inflow of the intersection. The digital model simulates the number of waiting cars based on the inflow

and length of the traffic light. There are 462 light traffic patterns as the system’s possible adaptation

patterns. The model can execute and generate the logs of each time unit. The goal is to minimize the
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number of waiting cars.

The anomaly of this system is car accidents. This accident can occur on the four ways of the

intersection. The anomaly changes the system’s behavior by reducing the outflow of the intersection.

On average, the anomaly decreases it almost 50%. This accident can be detected and identified by police

call after a certain amount of time unit.

4.3 Constructing the Environment data

Principle. (Step 1) A4 constructs the virtual environment data based on the historic environment

data. This environment data is used for the environment of the simulatable digital model of system. The

environment data should be non-deterministic, which means each sample should have differences and

uncertainty. If the environment data is always the same, the tactic planner can be overfitted to the fixed

environment. If the user have the average data as historical environment, the data-driven environment

model generation approach can be useful. [27] Also, time-series forecasting techniques with some random

initial value can be helpful to apply for sampling the environment, like using CNN or RNNs [28], injecting

the random values based on random walk model [29]. The simple methods like injecting some random

values or selecting the value with normal distribution can be another solution. The important thing

is that the environment data should be realistic and non-deterministic. If enough amount of historical

environment data already exists, this step can be skipped.

Example. The environment of the self-adaptive traffic light system is the inflow of cars. Therefore,

the environment data is based on the historical car inflow data. There is the average data of historical

environment on the open-source, it is not hard to collect the hour-based inflow data. Based on the

data, the approach distribute the car inflow sample data of 24 hours for each tick, 10 seconds. There

are periodic changes in car inflow. Therefore the periodic change is reflected by the sampling approach.

The car inflow of one hour is divided into 10 seconds based on the distribution of total car inflow and

randomly sampled based on that average flow. For example, if ten cars pass the intersection at noon, in

the sample, ten cars will pass between 11:50 A.M and 12:10 P.M.

4.4 Generating Anomaly-Free Tactic Planner

Principle. (Step 2) A4 generates the tactic planner by using reinforcement learning. Every re-

inforcement learning technique can be used for the generation, such as DQN [21], Deep Deterministic

Policy Gradient[25] or any other else. Engineers can select the appropriate RL method based on the

system’s characteristics, adaptation tactics, adaptation goals, and anomalies. When A4 generates the

tactic planner, the simulatable system model performs a role of a simulation model of RL. With a sample

of the environment, the system model gets the tactics from the RL model, changes the system state, and

gives rewards and system state back to the model. For this time, the tactic planner does not consider

any anomalies.

Example. The anomaly free tactic planner of the self-adaptive system is generated by the DQN [21]

technique. It has a simple structure of three layers of the convolutional neural network and is optimized

with SGD optimizer. The anomaly of the self-adaptive traffic light system is car accidents. It can occur

in all of the four ways of the intersection.
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4.5 Generating Anomaly-Specific Tactic Planners

Algorithm 1: A4 Anomaly Tactic Planner Generation

Input : targetAnomalies, anomalyFreeTacticPlanner, episodes, initialSystemState,

systemModel

Output: anomalyTacticPlanners

1 Procedure

2 anomalyTacticPlanners = [];

3 foreach anomaly in targetAnomalies do

4 anomalyTacticPlanner = RLModel(anomalyFreeTacticPlanner);

5 optimizer = optimizer(anomalyTacticPlanner.parameters);

6 foreach range(episodes) do

7 systemState = initialSystemState;

8 while isEnd(systemModel) do

9 selectedTactic = selectTactic(systemState);

10 reward, nextState = simulateOneStep(systemModel, systemState, selectedTactic,

anomaly);

11 optimizer.optimize(systemState, selectedTactic, reward, nextState);

12 systemState = selectTactic(nextState);

13 end

14 end

15 anomalyTacticPlanners.append(anomalyTacticPlanner)

16 end

17 return anomalyTacticPlanners

18 end

Principle. (Step 3) A4 generates the anomaly tactic planner by using transfer learning. Algorithm

1 shows the pseudo-code of this step of the process. For each anomaly that A4 targets, each anomaly

tactic planner will be generated. In line 3, the anomaly is given to the simulation. These anomalies

should be specified, and the simulatable digital model should be able to simulate the anomaly. In

line 4 of algorithm 1, the anomaly-free tactic planner is imported. There are various transfer learning

strategies, but the approach decided to re-train the whole model in this research because collecting the

dataset is not hard with the simulatable model. However, the engineers can use other methods based on

the situation. From lines 8 to 12, the model trains step by step based on the result of simulation with

the specific anomaly. In this step, the simulation returns the result with the anomaly. This anomaly

should remain the whole time during the training.

Example. Because there are four types of anomaly based on the location of the accident, the

approach should generate four types of anomaly-specific tactic planners. Based on the anomaly-free

tactic planner, the approach generates the anomaly-specific tactic planner. It imports the anomaly-free

planner and re-train the model with remained parameters.
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4.6 Monitoring and Identifying Anomaly

Principle. (Step 4) The system is on the runtime. It monitors the environment continuously

and detects the needs of the adaptation. The environment can be monitored by the sensors that are

connected with the physical parts of the system. The system state is also be monitored. (Step 5) The

system detects the anomaly and identifies what exactly the anomaly is. There are various methods of

anomaly identifications. Additional sensors for detecting anomalies or CPS anomaly detection algorithms

can be used for physical anomalies like fault due to wear-out. Exceptions, assertions, or cyber-attack

protection algorithms can be an example of anomaly identifications of cyber components.

Example. The traffic light system monitors the car inflow by using the camera that detects the

car’s movement. The system also can monitor the number of cars remaining at the intersection. The

traffic light system detects the anomaly by the monitoring camera or the direct report from the police.

The system also identifies the anomaly as a car accident, making the flow disturbance by 50%.

4.7 Planning and Executing the Tactic

Algorithm 2: A4 Tactic Planning

Input : environment, systemState, identifiedAnomaly, anomalyFreeTacticPlanner,

anomalyTacticPlanners

Output: optimalTactic

1 Procedure

2 if isAdaptationNeeded(environment) then

3 tacticPlanner = anomalyFreeTacticPlanner ;

4 if isAnomalyHappened(identifiedAnomaly) then

5 tacticPlanner = anomalyTacticPlanner [identifiedAnomaly ];

6 optimalTactic = tacticPlanner.selectTactic(environment, systemState);

7 return optimalTactic

8 end

Principle. (Step 6) Based on the monitored environment and system state, the A4 approach

decides whether there is an adaptation or not. Algorithm 2 shows the process of adaptation planning of

the A4 approach that dynamically changes the mode of tactic planner based on the identified anomaly.

As shown in line 3, for the general cases without any anomalies, the anomaly-free tactic planner will

plan the adaptation tactic and find the optimal tactic for the system. However, if there is an identified

anomaly, the tactic planner is changed to an anomaly-specific tactic planner trained on the digital model

with a particular anomaly, like in lines 4 to 5. The selected tactic planner then finds the optimal tactic

based on the given environment and system state. Furthermore, the selected tactic is executed.

Example. Based on the monitored environment and system state, the adaptation process is trig-

gered. The identifier shows an anomaly in the middle of the road of one way of the intersection. The

approach finds the anomaly-specific tactic planner of that car accident and finds the optimal tactic. And

then, the optimal tactic is executed.

14



Chapter 5. Evaluation

This section shows the evaluation of the A4 approach to present the effectiveness among other

adaptation approaches.

5.1 Research Questions

There are research questions that are related to the motivation and goal mentioned in section 1.2.

• Research Question 1 (RQ1): Cost Efficiency. How does A4 handle adaptation within time con-

straints?

• Research Question 2 (RQ2): Adaptation Effectiveness. How does A4 handle the anomalies, unlike

other approaches?

• Research Question 3 (RQ3): Relationship between Anomaly and Performance. How adaptation

effectiveness of A4 changes for various anomaly occurrence probability?

5.2 Experimental Design

This section introduces the experimental design of the research. The testbeds mentioned in section

3.1.1 is used for the experiments. Table 5.1 shows the detailed descriptions of testbeds.

RQ1. Cost Efficiency

The A4 approach is intended to handle the self-adaptive system’s adaptation process with time-

constraint adaptation limitations and huge adaptation space. This research experiments to compare

the adaptation cost of the A4 approach and other adaptation approaches in the runtime to check the

cost-efficiency. Especially in this research, the time complexity between adaptation approaches will be

shown.

The self-adaptive traffic light system will be used for this experiment. For each adaptation approach,

the same environment - car inflow, the same anomaly will be given. The system will run for the whole

24 hours, and the system waits during the adaptation is planning. The time before and after adaptation

will be measured, and the sum of every adaptation planning time will be the result. Every approach will

experiment 20 times.

RQ2. Anomaly-Aware Effectiveness

When MC-based adaptation approaches handle the anomaly by fluctuating the system model, and

the online RL adaptation approach learns the changed behavior, the A4 handles the anomaly by preparing

the anomaly-specific tactic planner based on the RL technique. For this research question, the adaptation

performance is compared between the approaches. The system’s goal or the reward of the system will

be shown.
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Table 5.1: Detailed descriptions for testbeds

Testbed Traffic Light Smart Warehouse

Environment Car inflow to the target intersection Recevied order to the warehouse

Environment

Complexity

8 factors (Cars move from 4 ways of

the road to 2 destinations - straight,

and left.)

Single factor (Item types of the or-

der)

Historical

Environment

Open traffic data from Seoul, Re-

public of Korea [30] - Hour based

daily traffic data

Order is randomly selected based on

the rule - there must be each one of

item in the group of orders

System Model

Cars move into the intersection

based on the environment, go away

based on the traffic light

Warehouse gets and serves the or-

der by controlling the repository and

shipment subsystem. The classifica-

tion subsystem orders items for new

inventory

System State
Number of cars waiting in the inter-

section

Number of orders left, Current in-

ventory status

Sensors Camera that senses traffic flow
Various sensors attached at device,

Cloud can get the orders.

Actuators Traffic lights

Item classifier that moves item from

classification subsystem to reposi-

tory

Adaptation Goal
Minimize the number of cars waiting

in the intersection
Serves the orders as fast as it can

Adaptation

Space
462 3

Adaptation

Cycle
Adapt for every traffic light cycle Adapt for each item

Reward

Assessment

Number of cars waiting in the inter-

section

Reward that considers potential in-

come of the warehouse, and the time

for the order serves

Anomaly Car accident Jammed item

Anomaly

Occurrence
Four ways of the intersection three of two repository device

Behavior Change
Reduce the outflow of the intersec-

tion
slows the item flow

Anomaly Impact Decrease the outflow by 50%
Item slowly moves from repository

to shipment at 25% of normal speed

Anomaly

Identifier
By sensors (cameras), police report Sensors on the repository device

Anomaly

Identified after
After one adaptation cycle After 1 tick passed
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The self-adaptive traffic light system and self-adaptive smart warehouse system are the testbeds

for this experiment. Because this experiment measures anomaly-aware performance, each run of the

experiment will have at least one anomaly at a time. The experiment process of the self-adaptive traffic

light system is the same as mentioned in section 5.2. However, this experiment measures the reward -

the number of cars waiting in the intersection.

The experiment on smart warehouse systems will be based on the digital model simulation and the

physical testbed. The environment and anomalies of the self-adaptive smart warehouse system will be

given equally between the approaches. Because this system should adapt the tactic at max one second,

the RL-based approach and random approach will be only used for comparison. The experiment ends

when the system serves all of the fixed numbers of orders. Predefined reward and the time until the

experiment ends will be served as a result. The experiment will run 20 times for each approach.

Table 5.2: Experimental setups for testbeds

Testbed Traffic Light
Smart Warehouse

Physical Virtual

Experiment
After 8,640 ticks (24 hours)

After all the orders completed to serve

Ends Total 20 Orders Total 10,000 orders

Rewards -

Order complete: 30
Item removed: -70
Order waiting: -1

Capacity of

Conveyor

Belt

- 5 20

Anomaly

Constant
108,000 2 30,000,000

Anomaly

Duration

360 ticks (1 hour)

Anomaly does not reoccur

until 720 ticks (2 hour) after

the anomaly ends.

10 ticks 100 ticks

Execution

CPU
Intel Core i7-7700

Cloud: Intel Xeon Gold

6140

Edge: ARMv7

Device: TI Sitara AM1808

AMD Ryzen 7

5800X

OS Windows 10 Pro

Cloud: CentOS 8.4

Edge: Raspbian 10

Device: EV3 MicroPy-

thon

Windows 10 Pro

RAM 16GB

Cloud: 16GB

Edge: 1GB

Device: 64MB

32GB

Implemented Python 3.9

Cloud: Python 3.9

Edge: Python 3.7

Device: Micropython

1.9.4 & pybricks 3.0

Python 3.9
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RQ3. Relationship between Anomaly and Performance

Because the anomaly massively affects the system’s performance, the anomaly occurrence rate can

affect the performance of the adaptation approach. Because of the limitation of the testbed, the ex-

periments for RQ1 and RQ2 are conducted with a larger anomaly occurrence rate than the actual rate.

Therefore, RQ3 will show the adaptation effectiveness on various anomaly occurrence rates.

The experiment for this research question is on the self-adaptive traffic light. Also, only A4, and the

ORL approach will be executed. Other experiment designs will be the same as a section 5.2. However,

the number of anomalies will be changed. For each approach and anomaly constant, the simulation will

run 1,000 times.

Table 5.3: Experimental setups for A4 and ORL approach

Input Size

Traffic Light: 9 (current tick, the number of cars for each inflow)

Smart Warehouse: 10 (current tick, current inventory status

for repository and shipment, current order remains for each item

type)

Size of Hidden Layer
Traffic Light: 256

Smart Warehouse: 512

Structure of CNN

Linear regression (input to hidden layer)

ReLU layer

Linear regression (hidden to hidden layer)

ReLU layer

Linear regression (hidden to size of adaptation space)

Loss Function Cross Entropy Loss

Optimizer
Traffic Light: RMSprop

Smart Warehouse: SGD

Learning Rate
Traffic Light: 0.01

Smart Warehouse: 0.001

Number of Episodes
Traffic Light: 500 & 100 (Transfer Learning)

Smart Warehouse: 150 & 50 (Transfer Learning)

Epsilon Decay 0.9 to 0.05 by decay rate 200

Gamma
Traffic Light: 0.8

Smart Warehouse: 0.9

Memory Size 10,000

Batch Size
Traffic Light: 64

Smart Warehouse: 128

5.3 Experimental Setups

The experimental setups are provided in table 5.2. This research also implemented statistical model

checking (SMC) [8], online RL (ORL) [11], and RL with SMC method (RL-SMC) inspired from [17] to

compare with A4 approach. The RL-SMC methods first extract the best tactic and tactics that record

the reward threshold, which is set by the reward of the best tactic. Moreover, the SMC verifies the tactic
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Table 5.4: Experiment setup of anomaly constant

Testbed
Anomaly

Constant

E(time between

anomalies)

E(number of

anomalies)

Traffic Light (RQ1 & 2) 108,000 1,426.82 3.45

Smart Warehouse

(Physical)
5 2.87 1.55

Smart Warehouse

(Simulation)
30,000,000 6,838.24 1.44

and chooses the best choice. As mentioned in section 5.2, for the traffic light system, the whole four

approaches will be the target, and for the smart warehouse, only RL-based approaches, A4 and ORL,

and random approach will be the target approach.

The A4 approach and ORL approach used the same CNN model with the Deep Q-learning algorithm

[21] and the same hyperparameters to train the model. The pretraining process was also the same as the

ORL approach. Therefore the only difference between the ORL model and anomaly-free tactic planner

of A4 is the online learning process. Table 5.3 shows the setups for the A4 and ORL approaches. SMC

approaches used simple monte carlo simulation algorithm and the number of samples was 10,000.

Table 5.4 shows the anomaly constant settings for each testbed. Each value is calculated based

on the setups of the anomalies. The traffic light system has approximately 3 or 4 anomalies for each

simulation to show the anomaly at various times like dawn, morning, afternoon, or night. All of the

experiments should have at least one anomaly.

5.4 Results & Analysis

5.4.1 RQ1. Cost Efficiency

Table 5.5: Average adaptation time for each approach

Approach Average Adaptation Time

A4 0.584ms

ORL 1.887ms

RL-SMC 25.49s

SMC 40.30s

This section shows the result of the RQ1. Table 5.5 shows the average adaptation time for each

adaptation approach on the self-adaptive traffic light system. The results show that the A4 and ORL

approaches take less than one second for the single adaptation process, while other MC-based approaches

take more than ten seconds. RL-SMC approach successfully reduces the size of the adaptation. However,

it costs more than 20 seconds to adapt, violating the time constraint of this testbed. The cost of SMC

can be reduced when if it uses the SMC approach like simple Monte-Carlo simulation [31]. However, it

will sacrifice the performance of the approach rather than the SPRT algorithm. ORL approach slightly

takes longer than the A4 approach because of the online learning process. However, it is not critical to

violate the time constraint. A4 shows the best result among other approaches.
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5.4.2 RQ2. Anomaly-Aware Effectiveness

Self-adaptive Traffic Light

Table 5.6: Average number of cars waiting for each approach

Approach Average number of cars waiting (cars, 20runs)

A4 54.51

ORL 60.89

RL-SMC 54.74

SMC 54.07

Figure 5.1: Box plotted result of average number of cars waiting

This section shows the result of the RQ2. Table 5.6 shows the average number of cars waiting at the

intersection for each adaptation approach on the self-adaptive traffic light system. Figure 5.1 also shows

the box plotted result of the effectiveness on the self-adaptive system. All of the four approaches showed

50 to 60 cars in the average of 24 hours simulation. Especially, A4, RL-SMC, and SMC approach all

showed a similar result in average reward values and showed very stable results on every run. Although

the RL-based approaches and the A4 approach have not proven the convergence yet, based on the results

in the traffic light system, it can argue that the proposed approach has competitiveness among other

approaches. ORL approach shows approximately 60 cars on average. However, it shows large dispersion

and records the highest value among the approaches. The difference between other approaches and the

ORL approach seems not that high. However, this difference is mainly caused by anomalies.

Figure 5.2 is an one-run example result of the experiment of RQ2. The red zone shows that the

anomaly happens at that time. In this example, there were three anomalies at almost 4 A.M., 11 A.M.,
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Figure 5.2: Example result of the traffic light system

and 5 P.M. The anomaly does not affect the performance at 4 A.M. when the cars do not pass a lot.

However, at 11 A.M. and 5 P.M., the anomalies do affect the performance of ORL. The online RL

algorithm is good to adapt the model by the changing system and environment continuously. However,

the online RL algorithm needs time to change itself by collecting enough data. In this experiment, the

RL algorithm cannot collect enough data for online learning. It can only collect 30 minutes of data.

Moreover, the online RL algorithm has another disadvantage when the anomaly is resolved. The system

changes once more, and the online RL algorithm gets damaged because of the memory of anomalies.

Self-adaptive Smart Warehouse

Table 5.7: Average performance of simulation of smart warehouse for each approach

Approach Average reward Average processed time

A4 202,275.4 10,012.8

ORL 169,765.6 10,016.1

Random 140,883.4 10,019.8

This section is the result of an experiment of RQ2 that runs on the smart warehouse system testbed.

Table 5.7 shows the effectiveness of each approach on the simulated version of the smart warehouse

system. Moreover, figures 5.5 and 5.6 shows the box plot of the result. The A4 approach dominates

the ORL and random approach. The ORL approach records higher rewards than the random and also

records similar values on some runs. However, the average result was much lower than the A4 approach.

The processing time seems not that different among the approaches. Nevertheless, the A4 approach
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Figure 5.3: Box plotted result of reward of the simulation of smart warehouse system

Figure 5.4: Box plotted result of processed time of the simulation of smart warehouse system
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seems better result than others.

Figure 5.5: Box plotted result of reward of the simulation of smart warehouse system

Figure 5.6: Box plotted result of processed time of the physical smart warehouse system
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Table 5.8: Average performance of physical warehouse testbed for each approach

Approach Average reward Average processed time

A4 424.33 30.33

ORL 385.53 32.93

Random 397.40 32.13

Based on the result of the simulation session, the experiment was conducted on the real smart

warehouse. Table 5.8 shows the result of the experiment on the real system, and figures 5.5 and 5.6 shows

the box plot result. Because the size of the experiment is smaller than the simulation, the difference

between approaches does not seem clear. However, the A4 constantly records the high rewards and low

processing time based on the box plotted result. It means that the A4 approach is effective not only in

the simulation but also in the real world.

5.4.3 RQ3. Relationship between Anomaly and Performance

Table 5.9: Average number of cars on different number of anomalies

# of Anomalies A4 ORL

0 53.23 52.75

1 53.92 56.75

2 54.59 59.03

3 54.94 61.27

4 55.47 63.75

5 56.33 65.25

6 56.59 68.45

7 56.89 70.82

This section is the result of the experiment of RQ3. Table 5.9 shows the average number of cars for

each number of anomalies. Figures 5.7 also show the number of cars change based on the anomaly. As

predicted, the average number of cars increased for both approaches as the anomaly frequency increased.

The ORL approach shows a good result when there is no anomaly. However, the A4 approach shows that

the increased values are not that high as the ORL approach. A4 approach increased only four cars when

the ORL approach increased almost twenty cars on seven anomalies. It shows that the A4 approach

is better than the ORL approach to manage the anomaly and mitigate the performance degradation.

Moreover, the A4 approach can manage the situation when there are many anomalies.

5.5 Threats to Validity

This section shows the threats to validity of this research, and provides the methods that prevent

the threats. One threat is the RL model selection of A4. This research is conducted based on the Deep

Q-learning algorithm which is action-reward function-based and supports discrete tactic space. This

algorithm has a limitation that does not support the continuous tactic space. This threat is reduced by

the fact that many of self-adaptive systems has discrete set of adaptation tactics. In addition, other RL

algorithms also can be utilized instead of the Deep Q-learning.
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Figure 5.7: Number of cars change based on the number of anomalies

Another threat is the fair comparison between the A4 and baseline approaches such as online RL,

or statistical model checking. In this research, the implementation of baseline approaches are followed

the approach from the following studies. [8, 11, 17] Moreover, the complexity, environment, anomalies,

and pre-trained RL model was equally given through the baselines.

Moreover, the experiment is conducted on small size of CPSoS. In this research, the single traffic

light, and smart warehouse is given as the experiment subject. However, the A4 approach can be applied

to any of CPSoS that has known anomalies, and the subjects are selected to show the comparison between

approaches with large amount of experiments. Therefore, it is highly sure that the A4 approach can show

the similar experiment result with this evaluation.
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Chapter 6. Conclusion

The environment that CPSoS face is various and keeps changing and evolving. The self-adaptation is

the key to achieving the CPSoS’s goal in various environments by adapting the system’s behavior. Model-

checking and reinforcement learning is the existing works to handle the uncertainty of the environment

and achieve the goal. However, in the CPSoS, the approaches cannot fully handle the time constraints

and anomalies.

The A4, Anomaly-Aware Adaptation Approach, is proposed to solve both time and anomaly prob-

lems in this research. The A4 generates anomaly-specific tactic planners using transfer learning and

plans the adaptation when the anomaly happens. The A4 shows that it is fast enough not to violate any

time constraints of the testbed, and the adaptation performance on various anomalies is also shown in

the physical testbeds.

Limitations

One limitation is the hardness of the application of A4. This approach needs various knowledge,

such as specifications of anomalies and anomaly identifiers. It is nearly impossible to know all of the

anomalies that can happen in the system. Moreover, identifying anomalies in the field that is started to

be actively researched recently and many technologies have not yet been developed. It is also challenging

to develop a digital model that imitates the anomalies.

Another limitation is the inefficiency of anomaly-specific tactic planners. Making a separate tactic

planner may not be difficult with using transfer learning. However, if there are many anomalies and

the engineer should consider the situation that the multiple anomalies happen together, the number of

anomaly-specific tactic planners grows exponentially like the state explosion problem.

The proof of convergence is also the limitation. Although the evaluation result of this research

seems good enough to use, it is unknown that the RL models - tactic planners will converge for every

self-adaptive system.

Future Work

The A4 approach shows enormous potential for utilizing the self-adaptive system with anomalies.

However, it also shows various potential future works to validate and improve the A4 approach. Future

work plans to solve the limitation of tactic planners by generating the integrated anomaly tactic planner

by encoding a system state as a few multiple vectors and adding anomaly as another vector. Another

future work is the integrated approach with the anomaly identifier using deep learning. For example,

the deep-learning-based anomaly identifier identifies and sends the result to the anomaly-specific tactic

planner. The experiment on various level of CPSoS is also planned to overcome the threat to validity

of the evaluation. In this research, it is experimented on the single traffic light. For future work, it is

planned to experiment on multiple traffic lights or a city block.
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[10] J. Cámara, H. Muccini, and K. Vaidhyanathan, “Quantitative verification-aided machine learning: A

tandem approach for architecting self-adaptive iot systems,” in 2020 IEEE International Conference

on Software Architecture (ICSA). IEEE, 2020, pp. 11–22.

[11] A. Palm, A. Metzger, and K. Pohl, “Online reinforcement learning for self-adaptive information

systems,” in International Conference on Advanced Information Systems Engineering. Springer,

2020, pp. 169–184.

[12] J. Plasse, J. Noble, and K. Myers, “An adaptive modeling framework for bivariate data streams with

applications to change detection in cyber-physical systems,” in 2017 IEEE International Conference

on Data Mining Workshops (ICDMW). IEEE, 2017, pp. 1074–1081.

[13] H. Kopetz, A. Bondavalli, F. Brancati, B. Frömel, O. Höftberger, and S. Iacob, “Emergence in
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